Central Angiotensin I Increases Swallowing Activity and Oxytocin Release in the Near-Term Ovine Fetus
نویسندگان
چکیده
The brain renin-angiotensin system (RAS) plays an important role in hydromineral and neuroendocrine balance. Although previous studies showed that exogenous angiotensin (Ang) II increased dipsogenic and vasopressin responses in near-term fetuses, little is known about the functional development of fetal endogenous brain RAS in the regulation of body fluid homeostasis. To determine the functional development of the central angiotensin-converting enzyme (ACE) in utero, we investigated the electrocortical (ECoG) activity, swallowing activity, oxytocin (OT) release, and c-fos expression in response to intracerebroventricular Ang I administration in the near-term fetal lamb. Ang I did not change fetal low-voltage (LV) and high-voltage (HV) ECoG temporal distributions, but increased fetal swallowing activity during LV ECoG (1.0±0.1 to 3.5±0.4 swallows/min). Additionally, Ang I evoked an increase in c-fos-immunoreactivity in putative dipsogenic centers, including the supraoptic and paraventricular nuclei of the hypothalamus, accompanied by an increase in fetal plasma OT levels. The expression of c-fos was demonstrated in OT neurons in the hypothalamus. The Ang I-mediated increase in fetal swallowing and plasma OT was inhibited by captopril. These results demonstrate the functional development of the fetal brain ACE system in the last trimester of gestation, which plays an important role in the RAS-mediated dipsogenic response and OT release in the regulation of body fluid homeostasis.
منابع مشابه
Central neuropeptide Y stimulates ingestive behavior and increases urine output in the ovine fetus.
We hypothesized that central neuropeptide Y (NPY) increases swallowing activity and alters renal function in the near-term ovine fetus. Six ewes with singleton fetuses (130 +/- 2 days of gestation; 148 days = term) were chronically prepared with arterial and venous catheters, a fetal lateral cerebroventricular cannula, and fetal bladder and amniotic fluid catheters. For determination of fetal s...
متن کاملDevelopment of ingestive behavior.
Swallowing represents a primary physiological function that provides for the ingestion of food and fluid. In precocial species, swallowing activity likely develops in utero to provide for a functional system during the neonatal period. The chronically instrumented ovine fetal preparation has provided the opportunity for recent advances in understanding the regulation of in utero swallowing acti...
متن کاملCentral angiotensin induction of fetal brain c-fos expression and swallowing activity.
The present study examined physiological and cellular responses to central application of ANG II in ovine fetuses and determined the fetal central ANG-mediated dipsogenic sites in utero. Chronically prepared near-term ovine fetuses (130 +/- 2 days) received injection of ANG II (1.5 microg/kg icv). Fetuses were monitored for 3.5 h for swallowing activity, after which animals were killed and feta...
متن کاملCentral angiotensin I increases fetal AVP neuron activity and pressor responses.
Angiotensin (Ang) II plays a critical role in cardiovascular homeostasis and neuroendocrine regulation. Little is known about whether central angiotensin-converting enzyme (ACE) is functional in the fetal brain. We investigated cardiovascular and neuroendocrinological responses to intracerebroventricular (icv) application of Ang I in the chronically prepared near-term ovine fetus in utero and e...
متن کاملDevelopment of oxytocin- and vasopressin-network in the supraoptic and paraventricular nuclei of fetal sheep.
The hypothalamic supraoptic and paraventricular nuclei consist of oxytocin and arginine vasopressin synthesizing neurons that send projections to the neurohypophysis. A growing body of evidence in adult animals and young animals at near term confirmed the structure and function in the vasopressinergic and oxytocinergic network. However, whether those distinctive neural networks are formed befor...
متن کامل